

2003 AFCEE Technology Transfer Workshop

Promoting Readiness through Environmental Stewardship

Bioventing – Please Keep It Simple!

Ross Miller Parsons 27 Feb 2003

Overview

- Underlying principles of the bioventing pilot test
- Purposes for the pilot test
- Sampling impacts and lessons-learned
- Application to operating bioventing systems
- Observations from a decade of application

Bioventing Pilot Study – Underlying Principles

- The technology was not proven and pilot tests had to provide indisputable evidence that the technology worked
- Air and helium injected during respiration test
 - Ensure you were extracting the injected air
 - Ensure you were not diluting or short circuiting
 - Prove that respiration was occurring

Vapor Monitoring Points

Injecting Air and Helium

Respiration Test Using Helium

Bioventing Pilot Study – Lesson Learned

- Bioventing is now a proven and well understood technology
- People expect respiration to occur at fuel sites
- Helium injection determined not necessary at most locations if sampling is conducted carefully
 - Only a small percentage of VMPs found to be leaking
 - Adds additional level of complication/error
- Certainly not necessary for operating systems

Bioventing Pilot Study-Purpose

- Evaluate site potential
- Provide information for system design

WARNING:

- Protocols are based on lessons-learned
 - Single biggest problem is sampling technique
 - Sampling problems discovered during technology development
 - Take advantage of our bad experiences by avoiding them

Site Potential

- Screen site for biodegradation potential by collecting and evaluating oxygen and carbon dioxide concentrations in soil gas.
- If you have high TVH and high oxygen the site has little potential
 - Experience indicates this will almost never occur
 - Less than 5% of fuel sites don't respire
 - If this happens at your site rule out poor sampling technique first

Site Potential (Cont)

- Determine if bioventing will likely increase degradation rate
- If site has greater than 5% oxygen, bioventing probably won't help
 - It's a zero-order reaction
- Poor sampling technique could inappropriately disqualify a site
 - Atmospheric air leakage in probes or sampling train is the root-cause of most problems
 - A 0% O2 site turns into a 5% O2 site with only 25% leakage

System Design

- Determine the air injection or extraction radius of influence (ROI) for system design
- Use SVE methods
- Rule of thumb > 1" H2O vacuum/pressure

Typical Bioventing Schematic

Pressure Measurements in VMPs

Air Radius of Influence

System Design (Cont)

- Determine the oxygen radius of influence for system design
- This requires a respiration test to measure oxygen utilization rate – Helium injection not necessary
- Using air injection ROI, and oxygen ROI, design system spacing and injection rate
- Consider how rapidly respiration rates are likely to decline
- Spacing larger than initial oxygen ROI is probably optimum

Uses of the Respiration Test

- Determines oxygen ROI for assisting in design
 - Not the sole basis; use experience
- Provides integrated estimate of remedial progress
- Provides best indication of when site is clean
- ESTIMATES fuel biodegradation rate/mass removal

Sampling Impacts and Lessons

- Direct reading equipment is designed to operate at atmospheric pressure
- Direct reading sampling equipment can not be used to pull the vacuum
- High potential for leakage and dilution with atmospheric air
 - Misinterpreted as low or no respiration or generally high site oxygen
 - Could discourage use of the technology

Sampling Impacts and Lessons(cont)

- Never use field O2/CO2 meters to extract soil gas
 - They will leak atmospheric air if under vacuum
- Always use vacuum pump assist as shown in design manual
- Some lower quality vacuum pumps leak under vacuum
- Connect meter to a side stream only to maintain atmospheric pressure – never connect direct
- Make sure there is excess air discharging

Atmospheric Pressure Sampling

Sampling Impacts and Lessons(cont)

- Check by using Tedlar or Mylar bag and a vacuum desiccator
- Compare vacuum desiccator measurements to those from the discharge of the sampling pump
- If no leakage then it's faster and more accurate to sample from the discharge side of the sampling pump
 - Allows you to better watch and catch O2 low point

Vacuum Desiccator

Sampling Impacts and Lessons(cont)

- Watch oxygen concentrations to capture low point
 - Cleary shows when purging is complete
 - Too much purging can bring in atmospheric air in shallow probes
- Careful sampling and cross checking eliminates need for helium injection
- Direct reading instrument (LEL/explosive meter) best for collecting hydrocarbon concentrations
 - Catalytic detector linear over a wider range than FID

Operating Bioventing Systems

- An operating system is a sold system
- No longer need pilot level detail
- Periodic (annual) respiration tests to monitor progress
- Respiration test provides integrated estimate of remedial progress

Operating Bioventing System

- Avoid periodic soil sampling to measure progress
 - Variability is recipe for confusion
- Minimizing OM&M encourages longer operation
 - "JUST SET IT AND FORGET IT" almost
- Never inject air or helium into VMP on an operating system for respiration test
 - It's not a pilot test anymore
 - Helium not needed even for pilot test

- If the VMP doesn't show >5% oxygen during operation adjust injection spacing and/or flow rate
- Get initial oxygen and carbon dioxide while system is running
- Bioventing systems do not require 20.9% O2
 - Zero-order reaction
 - Minimize air flow to minimize volatilization
 - VMPs at 8-15% O2 is probably optimized
- Turn off blower/s and start respiration test
 - Don't need 20.9% oxygen to start test

- Delay soil samples until respiration rate is at background rates
 - Minimizes unnecessary, costly, and confusing soil data
- Minimize periodic vapor sampling
 - What will you do with it?
 - Useful is cleanup based on specific compounds (BTEX)
 - Not useful if cleanup based on TPH, DRO, or GRO
- ESTIMATE fuel biodegradation rate/mass removal but don't overemphasis

- Don't get caught up in quantifying mass removal rate
- Intended as an estimate only
- Not really important since starting mass is never known
- Focus is on oxygen utilization rate for determining endpoint

- Minimize OM&M costs
- Avoid the trap of collecting periodic soil samples
- Know how you will use any periodic VOC data or don't collect it
- Minimize respiration tests (annual is adequate)

- Keep it running and keep it simple
- Consider hard-wiring so system does not need to be restarted after power outage (only for injection mode)
- Use telemetry technology to check on operating status
- Understand the pitfalls of periodic sampling and fight against it
- Attention to the sampling details and minimizing monitoring will maintain bioventing as a viable low-cost technology

Bioventing

Please keep it simple!!

It's not a 10 lb turkey but:

"Just set it and forget it" – almost

References

- Test Plan and Technical Protocol for at Field Treatability
 Test for Bioventing (1992)
- Addendum One to Test Plan and Technical Protocol for at Field Treatability Test for Bioventing. Using Soil Gas Survey to Determine Bioventing Feasibility and Natural Attenuation Potential
- Principles and Practices of Bioventing (1995)
- Documents available on the AFCEE website